The page you're viewing is for Korean (Korea) region.

Vertiv 영업담당자에게 문의하시면 고객의 고유한 요구에 맞게 복잡한 설계를 구성할 수 있습니다. Vertiv는 대규모 프로젝트에 대한 기술 지침이 필요한 조직에 필요한 지원을 제공할 수 있습니다.

자세히 보기

많은 고객이 Vertiv 리셀러 파트너와 협력하여 IT 애플리케이션을 위한 Vertiv 제품을 구매합니다. 파트너는 다양한 교육을 받고 전문 경험을 보유하고 있으며 Vertiv 제품을 통해 전체 IT 및 인프라 솔루션을 지정, 판매, 지원할 수 있는 독보적인 위치에 있습니다.

리셀러 찾기

필요한 것이 무엇인지 이미 알고 계십니까? 온라인 구매 및 배송의 편리함을 원하십니까? 특정 범주의 Vertiv 제품은 온라인 리셀러를 통해 구매할 수 있습니다.


리셀러 찾기

제품 선택에 도움이 필요하십니까? 여러분에게 적합한 솔루션을 안내할 수 있는 우수한 Vertiv 전문가와 상담하십시오.



Vertiv 전문가에게 문의하기

The page you're viewing is for Korean (Korea) region.

Building and Operating Low-Impact Data Centers

Reducing data center environmental impact does more than benefit the environment. It can reduce operating costs, help attract new customers, and proactively address ever-tightening regulatory requirements. Your path will depend on whether you’re developing a new facility or seeking to optimize an existing data center.

  Tackling the Data Center Sustainability Challenge

Graphic_01_1200x500_Case-for-Developing-Sustainable-Data-Centers_347507_0.png

Building a Low-Impact Data Center

Organizations early in the data center development process have an advantage in driving down emissions compared with those optimizing existing facilities. In a new facility, you’re dealing with a blank slate, unburdened by legacy systems. Every decision can be made with an eye toward impact reduction and the resulting facility can often achieve a level of efficiency and resource utilization that isn’t possible with existing facilities. Here are some of the decisions that can affect the environmental impact of a new data center.

 

Location

Where organizations have the flexibility to choose, locating facilities in colder climates enables greater use of free cooling to drive down facility energy consumption. However, with the need to move computing and storage resources closer to users, operators don’t always have that luxury and must be able to operate efficiently in any environment, including warmer climates with limited water resources. Regardless of where your data center is located, climate and availability of water should be considered during the design.

Financing

Establishing efficiency and water use goals for a new facility may open new financing options. “Green bonds” are growing in popularity and ESG-linked loans, in which interest rates are tied to the environmental performance, are also available.

Building design

Several organizations have established tools and certifications to help developers reduce the impact of buildings. Here are three to consider:

Building materials

Developers can leverage innovative and more environmentally friendly materials in their buildings. One promising material is CarbonCure, which chemically mineralizes CO2 in concrete while enhancing strength. Building Transparency is an organization that provides an Embodied Carbon in Construction (EC3) calculator to help model the carbon and price impacts of different material choices used in data center construction projects.

Alternative construction processes

Pre-fabrication can streamline the development process for a new data center. This method can also drive a high degree of operational efficiency through the holistic approach to design, engineering, construction and startup.

Integrating renewable energy

The carbon footprint of a data center is highly dependent on the source of energy being used. Utilities in most areas are limited in their ability to support operation with 100% renewable power, forcing operators committed to zero carbon operation to turn to other methods. Leaders across the industry are working to advance technologies that will support the transition to locally generated renewable power to gain more control over the energy used by data centers. Deploying technologies such as UPS systems with dynamic grid support capabilities paired with lithium-ion batteries can position a new data center to integrate these technologies as they become available.

graphic_800x600_dynamic-grid-support-compressed_351825_0.png

Vendor sourcing

Working with vendors who have made commitments to reduce the environmental impact of their operations and solutions can help ensure all parties share common goals. Efficiency-related product certifications, such as ENERGY STAR, can also be helpful in choosing appropriate vendors and solutions.

Infrastructure selection and design

Critical power and thermal management systems play a major role in data center efficiency. There are multiple types of cooling systems being used today that vary in their energy and water efficiency. Power systems can have different efficiency ratings, control capabilities, and overload ratings. Working with an infrastructure partner with a full range of solutions and expertise in enabling efficient operations is the best approach to ensuring infrastructure systems are tailored to your goals.

 

Reducing Environmental Impact in Existing Data Centers

If you’re just getting started addressing data center inefficiencies, there could be some easy wins that can be realized by moving to aisle containment, monitoring data center temperatures, or increasing the use of free cooling. If you’ve already implemented those solutions and are looking to take the next step on your journey, or have expanded your goals to incorporate aspects of the net zero data center, you may need look to newer technology systems that have emerged in recent years. Regardless of where you are starting, here’s a roadmap for moving forward.

 

Establish measurable goals

You need ways to measure what you’re trying to improve. Some metrics, such as PUE and WUE are relatively easy to capture and can be valuable in driving reduction in energy and water consumption. Others, such as measuring carbon emissions, can be more difficult, but may be necessary as reporting on emissions becomes more common.

Drive down PUE

With average PUE levels still above 1.5, there is opportunity in many data centers to achieve improvements. Legacy technologies, particularly those used in cooling the data center, can be a barrier to achieving significant improvements in PUE. Relatively simple approaches such as aisle containment and system-level controls can improve the efficiency of these systems, but at some point, it may be necessary to move to systems that can operate more efficiently and maximize free cooling. Work with your infrastructure partner to assess the existing system and implement recommended changes to operations. If it’s time to upgrade, your partner can also help you select an appropriate cooling solution based on your goals, data center location, size, and technology mix.

Increase visibility into operations

Tools such as intelligent rack PDUs can be deployed to gain deeper insight into power consumption across the data center. Temperature sensors integrated with the cooling system can be used to keep equipment in safe operating conditions without overcooling.

Increase equipment utilization

One way to reduce emissions is to use less energy, and that can often be accomplished by increasing equipment utilization rates. Identifying and decommissioning stranded servers, consolidating lightly used servers, and using server power management features all have the potential to increase IT utilization. Using modular infrastructure technologies can help ensure systems are sized to current requirements while retaining the flexibility to scale capacity as demand changes. New redundant power system architectures are also enabling UPS systems to achieve higher levels of utilization than was possible in the past.

Leverage renewable energy

Operators can reduce their emissions by taking advantage of power purchase agreements and renewable energy certificates. Some operators are also working with utilities to encourage more renewable energy and are making plans to support data centers with locally generated renewable power.

Reduce water consumption

Water consumption hasn’t always been considered an issue for data centers, but with water becoming scarce in some areas, it has become one today. Operators tied to water-intensive cooling technologies may need to re-evaluate these systems and make changes that reduce their dependence on large volumes of water to cool their facilities.

Improve e-waste management

Improperly disposed of e-waste can cause heavy metals to leak into the earth, contaminating groundwaters and rivers. Effective e-waste management programs can eliminate these risks through refurbishing, reusing, and reselling equipment that still has value, and ensuring responsible recycling of equipment that is at the end of its life. Valuable minerals that can be captured through recycling include steel, aluminum, copper and gold. Organizations can work with e-waste specialist to create closed-loop systems where they recover, recycle, and reprocess 100% of data center e-waste.

 

Resources

PARTNERS
개요
파트너 로그인

언어 & 지역